240 research outputs found

    IMF shape constraints from stellar populations and dynamics from CALIFA

    Get PDF
    M. Lyubenova et. al.In this paper, we describe how we use stellar dynamics information to constrain the shape of the stellar initial mass function (IMF) in a sample of 27 early-type galaxies from the CALIFA survey. We obtain dynamical and stellar mass-to-light ratios, ¿dyn and ¿*, over a homogenous aperture of 0.5 Re. We use the constraint ¿dyn¿¿* to test two IMF shapes within the framework of the extended MILES stellar population models. We rule out a single power-law IMF shape for 75 per cent of the galaxies in our sample. Conversely, we find that a double power-law IMF shape with a varying high-mass end slope is compatible (within 1¿) with 95 per cent of the galaxies. We also show that dynamical and stellar IMF mismatch factors give consistent results for the systematic variation of the IMF in these galaxies. © 2016, Published by Oxford University Press on behalf of the Royal Astronomical Society.This Paper is based on data obtained by the CALIFA survey, funded by the Spanish Ministry of Science under grant ICTS-2009-10, and the CAHA. IMN and JFB acknowledge funding from grant AYA2013-48226-C3-1-P from the Spanish Ministry of Economy and Competitiveness (MINECO) and, together with and GvdV, from the FP7 Marie Curie Actions via the ITN DAGAL (grant 289313). CJW acknowledges support through the Marie Curie Career Integration Grant 303912. Support for LG is provided by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009 awarded to The Millennium Institute of Astrophysics (MAS), and CONICYT through FONDECYT grant 3140566. RGD acknowledges support from AyA2014-57490-P. JMA acknowledges support from the ERC Starting Grant (SEDmorph; P.I. V. Wild).Peer Reviewe

    A New Approach to the Study of Stellar Populations in Early-Type Galaxies: K-band Spectral Indices and an Application to the Fornax Cluster

    Full text link
    New measurements of K-band spectral features are presented for eleven early-type galaxies in the nearby Fornax galaxy cluster. Based on these measurements, the following conclusions have been reached: (1) in galaxies with no signatures of a young stellar component, the K-band Na I index is highly correlated with both the optical metallicity indicator [MgFe]' and central velocity dispersion; (2) in the same galaxies, the K-band Fe features saturate in galaxies with sigma > 150 km/s while Na I (and [MgFe]') continues to increase; (3) [Si/Fe] (and possibly [Na/Fe]) is larger in all observed Fornax galaxies than in Galactic open clusters with near-solar metallicity; (4) in various near-IR diagnostic diagrams, galaxies with signatures of a young stellar component (strong Hbeta, weak [MgFe]') are clearly separated from galaxies with purely old stellar populations; furthermore, this separation is consistent with the presence of an increased number of M-giant stars (most likely to be thermally pulsating AGB stars); (5) the near-IR diagrams discussed here seem as efficient for detecting putatively young stellar components in early-type galaxies as the more commonly used age/metallicity diagnostic plots using optical indices (e.g Hbeta vs. [MgFe]').Comment: 47 pages, 16 figures, ApJ accepte

    Revisiting the Stellar Velocity Ellipsoid - Hubble type relation: observations versus simulations

    Get PDF
    The stellar velocity ellipsoid (SVE) in galaxies can provide important information on the processes that participate in the dynamical heating of their disc components (e.g. giant molecular clouds, mergers, spiral density waves, bars). Earlier findings suggested a strong relation between the shape of the disc SVE and Hubble type, with later-type galaxies displaying more anisotropic ellipsoids and early-types being more isotropic. In this paper, we revisit the strength of this relation using an exhaustive compilation of observational results from the literature on this issue. We find no clear correlation between the shape of the disc SVE and morphological type, and show that galaxies with the same Hubble type display a wide range of vertical-to-radial velocity dispersion ratios. The points are distributed around a mean value and scatter of σz/σR=0.7±0.2\sigma_z/\sigma_R=0.7\pm 0.2. With the aid of numerical simulations, we argue that different mechanisms might influence the shape of the SVE in the same manner and that the same process (e.g. mergers) does not have the same impact in all the galaxies. The complexity of the observational picture is confirmed by these simulations, which suggest that the vertical-to-radial axis ratio of the SVE is not a good indicator of the main source of disc heating. Our analysis of those simulations also indicates that the observed shape of the disc SVE may be affected by several processes simultaneously and that the signatures of some of them (e.g. mergers) fade over time

    Carbon stars in the X-shooter Spectral Library

    Get PDF
    We provide a new collection of spectra of 35 carbon stars obtained with the ESO/VLT X-shooter instrument as part of the X-shooter Spectral Library project. The spectra extend from 0.3μ\mum to 2.4μ\mum with a resolving power above \sim 8000. The sample contains stars with a broad range of (J-K) color and pulsation properties located in the Milky Way and the Magellanic Clouds. We show that the distribution of spectral properties of carbon stars at a given (J-K) color becomes bimodal (in our sample) when (J-K) is larger than about 1.5. We describe the two families of spectra that emerge, characterized by the presence or absence of the absorption feature at 1.53μ\mum, generally associated with HCN and C2_2H2_2. This feature appears essentially only in large-amplitude variables, though not in all observations. Associated spectral signatures that we interpret as the result of veiling by circumstellar matter, indicate that the 1.53μ\mum feature might point to episodes of dust production in carbon-rich Miras.Comment: 29 pages, 21 figures, 9 tables, Accepted for publication in A&

    Observational constraints to boxy/peanut bulge formation time

    Get PDF
    Boxy/peanut bulges are considered to be part of the same stellar structure as bars and both could be linked through the buckling instability. The Milky Way is our closest example. The goal of this letter is determining if the mass assembly of the different components leaves an imprint in their stellar populations allowing to estimate the time of bar formation and its evolution. To this aim we use integral field spectroscopy to derive the stellar age distributions, SADs, along the bar and disc of NGC 6032. The analysis shows clearly different SADs for the different bar areas. There is an underlying old (>=12 Gyr) stellar population for the whole galaxy. The bulge shows star formation happening at all times. The inner bar structure shows stars of ages older than 6 Gyrs with a deficit of younger populations. The outer bar region presents a SAD similar to that of the disc. To interpret our results, we use a generic numerical simulation of a barred galaxy. Thus, we constrain, for the first time, the epoch of bar formation, the buckling instability period and the posterior growth from disc material. We establish that the bar of NGC 6032 is old, formed around 10 Gyr ago while the buckling phase possibly happened around 8 Gyr ago. All these results point towards bars being long-lasting even in the presence of gas.Comment: Accepted for publication in MNRAS Letter

    Nearby supernova host galaxies from the CALIFA Survey: II. SN environmental metallicity

    Get PDF
    The metallicity of a supernova (SN) progenitor, together with its mass, is one of the main parameters that rules their outcome. We present a metallicity study of 115 nearby SN host galaxies (0.005<z<0.03) which hosted 142 SNe using Integral Field Spectroscopy (IFS) from the CALIFA survey. Using O3N2 we found no statistically significant differences between the gas-phase metallicities at the locations of the three main SN types (Ia, Ib/c and II) all having ~8.50±\pm0.02 dex. The total galaxy metallicities are also very similar and we argue that this is because our sample consists only of SNe discovered in massive galaxies (log(M/Msun)>10 dex) by targeted searches. We also found no evidence that the metallicity at the SN location differs from the average metallicity at the GCD of the SNe. By extending our SN sample with published metallicities at the SN location, we studied the metallicity distributions for all SN subtypes split into SN discovered in targeted and untargeted searches. We confirm a bias toward higher host masses and metallicities in the targeted searches. Combining data from targeted and untargeted searches we found a sequence from higher to lower local metallicity: SN Ia, Ic, and II show the highest metallicity, which is significantly higher than SN Ib, IIb, and Ic-BL. Our results support the picture of SN Ib resulting from binary progenitors and, at least part of, SN Ic being the result of single massive stars stripped of their outer layers by metallicity driven winds. We studied several proxies of the local metallicity frequently used in the literature and found that the total host metallicity allows for the estimation of the metallicity at the SN location with an accuracy better than 0.08 dex and very small bias. In addition, weak AGNs not seen in total spectra may only weakly bias (by 0.04 dex) the metallicity estimate from integrated spectra. (abridged)Comment: 24 pages, 16 Figures, 13 Tables, Accepted in A&

    Integrated J- and H-band spectra of globular clusters in the LMC: implications for stellar population models and galaxy age dating

    Full text link
    (Abridged) The rest-frame near-IR spectra of intermediate age (1-2 Gyr) stellar populations are dominated by carbon based absorption features offering a wealth of information. Yet, spectral libraries that include the near-IR wavelength range do not sample a sufficiently broad range of ages and metallicities to allow for accurate calibration of stellar population models and thus the interpretation of the observations. In this paper we investigate the integrated J- and H-band spectra of six intermediate age (1-3 Gyr) and old (>10 Gyr) globular clusters in the Large Magellanic Cloud, using observations obtained with the SINFONI IFU at the VLT. H-band C2 and K-band 12CO(2-0) feature strengths are compared to the models of Maraston (2005). C2 is reasonably well reproduced by the models at all ages, while 12CO(2-0) shows good agreement for older (age>2 Gyr) populations, but the younger (1.3 Gyr) globular clusters do not follow the models. We argue that this is due to the fact that the empirical calibration of the models relies on only a few Milky Way carbon star spectra, which show different 12CO(2-0) index strengths than the LMC stars. The C2 absorption feature strength correlates strongly with age. It is present essentially only in populations that have 1-2 Gyr old stars, while its value is consistent with zero for older populations. The distinct spectral energy distribution observed for the intermediate age globular clusters in the J- and H-bands agrees well with the model predictions of Maraston for the contribution from the thermally pulsing asymptotic giant branch phase (TP-AGB). We show that the H-band C2 absorption feature and the J-, H-band spectral shape can be used as an age indicator for intermediate age stellar populations in integrated spectra of star clusters and galaxies.Comment: 10 pages, 6 figures, abstract abridged, accepted for publication in A&

    Integrated K-band spectra of old and intermediate-age globular clusters in the Large Magellanic Cloud

    Full text link
    Current stellar population models have arguably the largest uncertainties in the near-IR wavelength range, partly due to a lack of large and well calibrated empirical spectral libraries. In this paper we present a project, which aim it is to provide the first library of luminosity weighted integrated near-IR spectra of globular clusters to be used to test the current stellar population models and serve as calibrators for the future ones. Our pilot study presents spatially integrated K-band spectra of three old (>10 Gyr) and metal poor ([Fe/H]~-1.4), and three intermediate age (1-2 Gyr) and more metal rich ([Fe/H]~-0.4) globular clusters in the LMC. We measured the line strengths of the Na I, Ca I and 12CO(2-0) absorption features. The Na I index decreases with the increasing age and decreasing metallicity of the clusters. The Dco index, used to measure the 12CO(2-0) line strength, is significantly reduced by the presence of carbon-rich TP-AGB stars in the globular clusters with age ~1 Gyr. This is in contradiction with the predictions of the stellar population models of Maraston (2005). We find that this disagreement is due to the different CO absorption strength of carbon-rich Milky Way TP-AGB stars used in the models and the LMC carbon stars in our sample. For globular clusters with age >2 Gyr we find Dco index measurements consistent with the model predictions.Comment: 15 pages, 11 figures, accepted for publication in A&

    Resolving the age bimodality of galaxy stellar populations on kpc scales

    Get PDF
    Galaxies in the local Universe are known to follow bimodal distributions in the global stellar populations properties. We analyze the distribution of the local average stellar-population ages of 654,053 sub-galactic regions resolved on ~1-kpc scales in a volume-corrected sample of 394 galaxies, drawn from the CALIFA-DR3 integral-field-spectroscopy survey and complemented by SDSS imaging. We find a bimodal local-age distribution, with an old and a young peak primarily due to regions in early-type galaxies and star-forming regions of spirals, respectively. Within spiral galaxies, the older ages of bulges and inter-arm regions relative to spiral arms support an internal age bimodality. Although regions of higher stellar-mass surface-density, mu*, are typically older, mu* alone does not determine the stellar population age and a bimodal distribution is found at any fixed mu*. We identify an "old ridge" of regions of age ~9 Gyr, independent of mu*, and a "young sequence" of regions with age increasing with mu* from 1-1.5 Gyr to 4-5 Gyr. We interpret the former as regions containing only old stars, and the latter as regions where the relative contamination of old stellar populations by young stars decreases as mu* increases. The reason why this bimodal age distribution is not inconsistent with the unimodal shape of the cosmic-averaged star-formation history is that i) the dominating contribution by young stars biases the age low with respect to the average epoch of star formation, and ii) the use of a single average age per region is unable to represent the full time-extent of the star-formation history of "young-sequence" regions.Comment: 17 pages, 11 figures, MNRAS accepte
    corecore